
 FX ONE : DLL Manual

Scope

The purpose of this manual is to describe the operation of the DLL Interface for the Foenix FX ONE
printers. A description of what the DLL is and how it works is provided. Example code fragments
using the DLL functions are included. Two further examples describe how the DLL can be used with a
database to extract information and send to the printer. Finally, a description of every function is
provided at the end of this document.

What is a DLL?

A DLL (Dynamic Link Library) is a set of software functions that can be used by a third party
developer to incorporate into their own applications. The Foenix DLL described here provides a set
of functions that allows a FX ONE printer to be controlled via the FXPro application or Foenix Touch
Controller. The library makes the communication process to the printer much simpler for the
developer as it takes care of the actual protocol used. The developer then uses a relatively simple
mechanism to monitor printers, load messages and transmit data.

How does a DLL work?

The DLL is used by the customers’ application to communicate with the printer. The diagram below
gives a basic overview showing how the DLL sits between the application and printer.

Files to include

Within the third party application the following files are needed. These are supplied by Foenix
Coding;

Header file that declares the functions available in the DLL

Static library for incorporating into the third party application during building and
also provides the function call interface to the actual functions

Dynamic library that is loaded at third party application run

Printer DLL.h

Printer DLL.lib

Printer DLL.dll

Using the library

The third party application talks to a printer via a version of FXPro that is running on either the
same PC as the application or one connected to it via Ethernet.

In this case, the PC running the FXPro application is called a server.

Alternatively, the third party application running on a PC can use the DLL to communicate with a
printer via a Foenix Touch Controller over Ethernet.

In this case, the Foenix Touch Controller is called a server.

The library can be reused for multiple servers each connected to its own network of printers.

Example Network Installation 1

This setup has the user application and the FXPro application running on the same PC.
Ethernet or USB to RS485 converter is used to connect between the PC and printers.

Example Network Installation 2

This setup has the user application and the FXPro application running on separate PCs.
Ethernet or USB to RS485 converter is used to connect between the PC and printers.

PC 1 could be in an office and PC 2 a low cost netbook located near to the production line.

Note : PC2 could be replaced by a Foenix touch controller.

Example Network Installation 3

This setup has the user application running on a main PC and several touch controllers are used to
create ‘groups’ of printers. Each touch controller is acting as a server. The DLL can be used to
identify these groups and switch between them. The example below uses the touch controllers for
three distinct groups ‘Line 1’, ‘Line 2’, and ‘Line 3’.

1 Connect to a server e.g. ‘Line 1’.
2 Select printer within that server e.g. ‘Carton’.
3 Perform action on that printer e.g. poll status or change message.
4 Select another printer within that server (back to 2) or change to a new server (back to 1).

Basic Test code

There are two example applications available complete with source code. These test different
aspects of the DLL and can be used as a template for third party applications.

DLLTest.exe
PrinterDLL.dll
PrinterDLL.lib

DLLTest is a DOS based program. It will run from within Windows in a separate box.

Connect a Foenix Touch Controller on the network using an Ethernet cable or run FXPro software on
this PC or any other PC connected to the network.

Double click on ‘DLLTest.exe’ and allow the program to run. After a short time searching for servers
(FXPro or Touch Controllers), the test program will begin to get and send information using the DLL
functions. In the third party application, the user is free to choose which functions they want to use.
An example screen is shown below.

The C++ source code is freely distributed. A more comprehensive test application is also provided.

Functional Test Code

This is a small application that allows the developer to explore the library functions. It is provided as
is with no warranty. The source code is also provided which can be modified or used as a basis for
third party applications.

To launch the executable application double click on foenixDLLNET.exe. The following window will
be displayed.

To connect to a Touch controller or PC running FXPro, click on .

The application will use the DLL to search for local and remote servers (FXPro) running on PCs and
controllers over Ethernet. The log window will show the results of the search as each unit is found.

A summary of the devices found is then displayed which allows the user to select which unit to
interrogate further. The summary below shows a single server has been located running on a PC.
The FXPro version on this PC is 1.02 and 3 printers are connected to the server.

Once a unit is selected, the program obtains all the settings, message, font and logo names from the
device. The log window shows the commands being sent and received. An example is shown below:

The output from the printer is split into a set of tabbed screens.

Messages

shows a list of messages on the unit. A message can be selected for printing,
renamed, deleted or a new message added remotely.

Fonts

shows a list of fonts on the unit. A font can be deleted or a new one added.

Logos

shows a list of logos on the unit. A logo can be deleted or a new one added.

Settings

shows the basic settings such as message configuration options and the com port
setting used for external communication.

Shifts

shows the start of day. In addition, four shift patterns per day can be defined.

Current Printer shows the settings and message for the currently selected printer.

The contents of these tabs are automatically populated when the touch controller or PC software
that has previously been identified is selected. Any changes to the items within the tabs that have

been set directly on the connected unit can be updated within the tabs by pressing . In

addition, pressing will send any changes to the printer. In this way, it is possible to

make multiple changes and send the settings over in one go.

Selecting Printer

If there are multiple printers on a network, pressing will allow the current one to be
changed.

Select the name of the printer to select.

The program will disconnect from the current printer and select the new one. Click on
to obtain the new parameters for the printer.

Changing Message To Print On Printer

The currently selected message to print can be changed by pressing . Select the new

message and click .

Printer Status

The current printer status is displayed below the printer name.

Enabling or disabling printON check box will turn printing on or off. The current print status can be

retrieved using the button. Note: print status is retrieved from the printer back to the

controller or FXPro application on a periodic basis of about 5 seconds.

Database Integration

An example Access database is included which allows data to be extracted. A test message is loaded
into the printer and the field data populated from the database.

This demonstration uses;

test.mdb
testdb.svn

Access database
message file with a field

Click on the Test Access button to begin the process.

The program opens the Access database and performs a query operation to read content from the
database.

The program then deletes and then loads the ‘testdb.svn’ message to the printer server. This step is
not always necessary but is included here in case there is a previous message called ‘testdb’.

The program then determines if there are any fields or editable counters in the message. This
message only has fields so the counter response comes back negative.

The program then retrieves the current field data. In this case the field is blank.

The program populates the field and re-reads the data. The field now has the new information.

The SQL server option requires a SQL database to be configured, server running and
username/password assigned to allow access. The source code associated with the ‘testSQLServer’
button can be used for reference.

Example DLL usage

Application Launch

This process is performed once on application launch and generates a handle for all further DLL calls.

void* UDPMan = CreateUDPManager();

Application Exit

DestroyUDPManager(UDPMan);

Connection to servers

This process is performed once the UDP Manager has been created and begins the search for all
servers connected via Ethernet. This may be a mixture of FXPro (PC) and Touch Controller.

1 Search for external servers
2 Continue searching for external servers
3 Connect to all the servers that were found

1 while (!UDP_FoundInitialServers(UDPMan))

{
Sleep(4000);

}

2 while (UDP_GetServerListSize(UDPMan) < 1)

{
UDP_Refresh(UDPMan);
Sleep(5000);

}

3 std::vector<void*> clients;

int iMax = UDP_GetServerListSize(UDPMan);
for (int i = 0; i < iMax; ++i)
{

clients.push_back(ConnectToServer(UDPMan,i));
}

At this point a list of servers has been created and connected.

Identify the servers

Each server can identify itself by name and type (PC or Touch Controller). Cycle through the server
list to obtain these details. These names can then be used to pick and choose which server to use.

int iMax = UDP_GetServerListSize(UDPMan);
for (int i = 0; i < iMax; ++i)
{

printf("Server %d : %ls (%s)\n", i ,UDP_GetName(UDPMan,i), (UDP_IsPC(UDPMan,i)
? "PC" : "Touch Controller"));

}

Get the number of printers connected to the server

const ID91_GETNETWORKLISTPRINTERCOUNT_SERVER* a =
TCP_GetNetworkListPrinterCount(*it);

a->count returns the number of printers in the group network.

Get the list of printer names connected to the server

const ID90_GETNETWORKLISTPRINTERLIST_SERVER* a = TCP_GetNetworkListPrinterList(*it);

a-> count returns the number of printers in the group network.

a->printers[].comPort returns the port used to connect the printer to the group.
a->printers[].errorCode returns the error code for the printer.
a->printers[].name returns a string to the printer name.

Switch to a printer within the group

Switches to a printer called ‘2---------------‘.

const ID82_SWITCHTOPRINTERBYNAME_SERVER* a = TCP_SwitchToPrinterByName(*it, L"2-
- -------------");

This printer will now be the active one. Subsequent printer commands will act on this printer.

Determine printer type

Assuming a connection to a list of servers has already been made, the type of printer connected to
the server can be determined with:

std::vector<void*> clients; // List of clients already created
std::vector<void*>::iterator it = clients.begin() // Start of list
const ID40_GETPRINTERTYPE_SERVER* a = TCP_GetPrinterType(*it);
printf("ok? %d, type:%d, name: %S\n",a->ok,a->type,a->name);

If no printer is found then ok=0. Otherwise, the type of printer (0:FXONE-S, 1:FXONE-R, 2:FXONE-P)
can be determined along with the name of the printer connected as a 17 byte string.

Determine printer firmware

Assuming a connection to a list of servers has already been made, the firmware version of the
printer connected to the server can be determined with:

std::vector<void*> clients; // List of clients already created
std::vector<void*>::iterator it = clients.begin() // Start of list
const ID41_GETPRINTERFIRMWARE_SERVER* a = TCP_GetPrinterFirmware(*it);
printf("type: %d, version: %02d.%02d\n",a->type,a->major,a->minor);

Type is 0: FXONE-S, 1: FXONE-R, 2:FXONE-P printer model. The major and minor digits are
recombined to give a firmware version ‘major.minor’.

Determine printer status

Assuming a connection to a list of servers has already been made, the status of the printer
connected to the server can be determined with:

std::vector<void*> clients; // List of clients already created
std::vector<void*>::iterator it = clients.begin() // Start of list
const ID42_GETPRINTERSTATUS_SERVER* a = TCP_GetPrinterStatus(*it);

printf("ok? %d, lastError: %d, status: %d, no. of prints: %d\n",a->ok,a->errCode,a->status, a-
>numPrints);

‘ok’ indicates if the command was successful (0: false, 1: true). The printer error code and current
printing status is returned. The error code list is shown below:

Enumeration Error Code

0 ERROR_NO_ERROR

1 ERROR_LOW_INK

2 ERROR_SHUTTER_FAULT

3 ERROR_NO_FILE_ON_USB_STICK
4 ERROR_TOO_MUCH_DATA_USB_STICK

5 ERROR_DATA_INVALID_CHECKSUM_USB_STICK

6 ERROR_DATA_NO_STX_USB_STICK

7 ERROR_DATA_NO_ETX_USB_STICK

8 ERROR_DATA_SIZE_MISMATCH_USB_STICK

9 ERROR_DATA_INVALID_TYPE_USB_STICK

10 ERROR_TOO_MUCH_DATA_DIRECT_CONNECTION
11 ERROR_DATA_INVALID_CHECKSUM_DIRECT_CONNECTION

12 ERROR_DATA_NO_STX_DIRECT_CONNECTION

13 ERROR_DATA_NO_ETX_DIRECT_CONNECTION

14 ERROR_DATA_SIZE_MISMATCH_DIRECT_CONNECTION

15 ERROR_DATA_INVALID_TYPE_DIRECT_CONNECTION

16 ERROR_DATA_INVALID_ELEMENT_TYPE
17 ERROR_DATA_INVALID_TIME

18 ERROR_DATA_INVALID_DATE

19 ERROR_DATA_INVALID_SHIFT

20 ERROR_DATA_INVALID_COUNTER

21 ERROR_DATA_INVALID_BARCODE

22 ERROR_DATA_INVALID_SPIT
23 ERROR_DATA_INVALID_TICKLE

24 ERROR_DATA_INVALID_SHUTTER_OPEN_CALIBRATION

25 ERROR_DATA_INVALID_SHUTTER_CLOSE_CALIBRATION

26 ERROR_DATA_INVALID_SHUTTER_OPEN_TIME

27 ERROR_DATA_INVALID_PRINT_PARAMETERS

28 ERROR_DATA_INVALID_BACKGROUND

29 ERROR_DATA_TOO_MANY_DYNAMIC_ELEMENTS

30 ERROR_DATA_TOO_MANY_FONT_COMBINATIONS
31 ERROR_DATA_FONT_TABLE

32 ERROR_INVALID_SYMBOL

33 ERROR_PRINTER_BUSY

34 ERROR_POWER_FAULT_14V
35 ERROR_POWER_FAULT_24V

36 ERROR_POWER_FAULT_36V

37 ERROR_CORRUPTED_PACKET

The printer status is shown below:

Enumeration Status Code

0 PRINTER_ERROR

1 PRINTER_NO_MESSAGE

2 PRINTER_MESSAGE_PRINT_OFF

3 PRINTER_MESSAGE_PRINT_ON

4 PRINTER_PRINTING

5 PRINTER_CONFIGURATION

The number of prints completed is also provided by this function.

Turning printing on/off

Assuming a connection to a list of servers has already been made, the print status of the printer
connected to the server can be controlled with:

std::vector<void*> clients; // List of clients already created
std::vector<void*>::iterator it = clients.begin() // Start of list
TCP_SetPrinterStatus(*it,PrintState);

PrintState – 0: Printing turned off, 1: Printing turned on.

Get number of installed messages

Assuming a connection to a list of servers has already been made, the number of messages installed
on the server can be determined with:

std::vector<void*> clients; // List of clients already created
std::vector<void*>::iterator it = clients.begin() // Start of list
const ID1_GETNUMBEROFINSTALLEDMESSAGES_SERVER* a
TCP_GetNumberofInstalledMessages(*it,NULL);

The number of messages located at the optional path (PC) or NULL (Touch Controller) will be
returned.

Get list of installed message

Assuming a connection to a list of servers has already been made, a list of messages installed on the
server can be determined with:

std::vector<void*> clients; // List of clients already created
std::vector<void*>::iterator it = clients.begin() // Start of list
const ID2_GETINSTALLEDMESSAGELIST_SERVER* a =
TCP_GetInstalledMessageList(*it,NULL);

The string returned contains a list of all the messages installed that are located at the optional path
(PC) or NULL (Touch Controller).

Add a message to the server

Assuming a connection to a list of servers has already been made, a SVN message file on a connected
PC can be copied to the server:

std::vector<void*> clients; // List of clients already created
std::vector<void*>::iterator it = clients.begin() // Start of list
TCP_AddMessage(*it,L"testop",L"C:\\",NULL);

The message name (without extension SVN) is specified. The source path is specified and a
destination path is required for the PC version. Note, when specifying the path, the string parameter
may require the use of ‘\\’ to represent ‘\’ due to programming language restrictions.

Delete a message from the server

Assuming a connection to a list of servers has already been made, a SVN message file on the server
can be removed:

std::vector<void*> clients; // List of clients already created
std::vector<void*>::iterator it = clients.begin() // Start of list
TCP_DeleteMessage(*it,L"testop",NULL);

The message name (without extension SVN) is specified. The source path is required for the PC
version. Note, when specifying the path, the string parameter may require the use of ‘\\’ to
represent ‘\’ due to programming language restrictions.

Rename a message on the server

Assuming a connection to a list of servers has already been made, a SVN message file on the server
can be renamed:

std::vector<void*> clients; // List of clients already created
std::vector<void*>::iterator it = clients.begin() // Start of list
TCP_RenameMessage(*it,L"testop",L"testop2",NULL);

The original and new message names (without extension SVN) are specified. The path is required for
the PC version. Note, when specifying the path, the string parameter may require the use of ‘\\’ to
represent ‘\’ due to programming language restrictions.

Get current message set to print

Assuming a connection to a list of servers has already been made, the name of the current message
selected to print can be retrieved:

std::vector<void*> clients; // List of clients already created
std::vector<void*>::iterator it = clients.begin() // Start of list
const ID7_GETCURRENTMESSAGENAME_SERVER* a = TCP_GetCurrentMessageName(*it);

A string containing the name is returned.

Set a message to print

Assuming a connection to a list of servers has already been made, a message can be sent to the
printer for printing:

The first step is to load the message into the print server.

std::vector<void*> clients; // List of clients already created
std::vector<void*>::iterator it = clients.begin() // Start of list
TCP_LoadMessage (*it,L"time1",NULL);

At this point, any dynamic data can be updated as required.

Now, the message can be despatched to the printer.

std::vector<void*> clients; // List of clients already created
std::vector<void*>::iterator it = clients.begin() // Start of list
TCP_PrintMessage (*it);

The path is required for the PC version. Note, when specifying the path, the string parameter may
require the use of ‘\\’ to represent ‘\’ due to programming language restrictions. Printing can be
enabled by the TCP_SetPrinterStatus command. Printer monitoring can be performed using the
TCP_GetPrinterStatus command.

Updating fields

Assuming a connection to a list of servers has already been made, fields within a message can be
updated:

1 Determine if the there are any fields within the message, if so proceed with other steps
2 Get a list of any field names within the message
3 Get the field data for a specified name otherwise abort
4 Present the list to the operator, send the updated data back

std::vector<void*> clients; // List of clients already created
std::vector<void*>::iterator it = clients.begin() // Start of list

1

2

const ID8_GETANYFIELDDATAINCURRENTMESSAGE_SERVER* a =

TCP_GetAnyFieldDataInCurrentMessage(*it);

Returns 0: no fields present in message, 1: fields present in message

const ID15_GETFIELDNAMESINCURRENTMESSAGE_SERVER* a =

TCP_GetFieldNamesInCurrentMessage(*it);

This returns a string containing field names that are available to be updated.

3

4

const ID9_GETFIELDDATAINCURRENTMESSAGE_SERVER* result =

TCP_GetFieldDataInCurrentMessage(*it,L"MYFIELD");

This returns a structure that contains all the field data for a field called ‘MYFIELD’.

const ID10_SETFIELDDATAINMESSAGE_SERVER* res =

TCP_SetFieldDataInMessage(*it,L"MYFIELD",L"123");

This copies ‘123’ string to a field called ‘MYFIELD’.

Updating counters

Assuming a connection to a list of servers has already been made, counters within a message can be
updated:

1 Get a list of any counters within the message
2 Get the counter data for a specified index
3 Present the list to the operator, send the updated data back

std::vector<void*> clients; // List of clients already created
std::vector<void*>::iterator it = clients.begin() // Start of list

1 const ID11_GETCOUNTERLISTINMESSAGE_SERVER* a = TCP_GetCounterListInMessage(*it);

Returns a structure which indicates if there are any counters in the message, the number of
counters and also a set of indices to reference the individual counters.

2 TCP_GetCounterValueInMessage(*it,index);

Returns a structure for the specified counter index. This structure contains all the data
needed to be able to offer the counter to the user including rollover value, increment,
current value, number of digits.

3 TCP_SetCounterValueInMessage(*it,index,count, batch);

For the specified index, the count and batch values can be updated. For a regular counter
that does not need batches, set the batch parameter to 1.

Using a database

Data that is sent to the Foenix printers can be obtained from a variety of sources; manually entered,
barcode scanner, checkweigher or automatically from a database. This section gives two examples
on how to extract data from existing databases, one created in Access and one in SQL. The user is
free to copy and reuse this code as required.

Setting up the database is beyond the scope of this section.

Access

A database called ‘My Database’ which has no password.

String filenamedb=”My Database”;

String myConnectionString = @"Driver={Microsoft Access Driver (*.mdb)};" + "Dbq="+
filenamedb +";";// +";Uid=Admin;Pwd=;

// Open database

OdbcConnection myConnection = new OdbcConnection();
myConnection.ConnectionString = myConnectionString;

try
{

myConnection.Open();
}catch(Exception){

// Unable to open DB – add exception logic as required
return;

}

// Database opened - get data from database - see Support functions below
String valuefromdb=executeQuery(ref myConnection);

// Close database
myConnection.Close();

// Prepare message
int ret=setCurrentMessage(); // See Support functions below
if (ret == 0)
{

//Set value
ret = setFieldValue(valuefromdb); // See Support functions below

}

SQL

A database called ‘My Database’ which has a username ‘ABC’ and a password ‘123’. This database is
managed by a SQL server called ‘Server’.

String namedb=” My Database”;
String pwd=’123’;
String nameserver=’Server’;
String username=’ABC’;

String myConnectionString = @"Driver={SQL Server};Server=" + nameserver + ";Database=" +
namedb + ";Uid="+username+";Pwd="+pwd+";";

//Open database
OdbcConnection myConnection = new OdbcConnection();
myConnection.ConnectionString = myConnectionString;
try
{
myConnection.Open();
}catch(Exception){

// Unable to open DB – add exception logic as required
return;

}

// Database opened - get data from database - see Support functions below
String valuefromdb=executeQuery(ref myConnection);

// Close database
myConnection.Close();

// Prepare message
int ret=setCurrentMessage(); // See Support functions below
if (ret == 0)
{

//Set value
ret = setFieldValue(valuefromdb); // See Support functions below

}

The commands for both types of database are identical. They use standard SQL functions to connect
to a database and extract data. The only difference between the two types is the initial connection
method.

Support functions used

executeQuery uses the previously established connection to extract all the row data and insert into
a list. The list is then returned. A third party application may choose to run a specific query based on
the data required. In which case the ‘sql’ command string will be modified accordingly.

protected String executeQuery(ref OdbcConnection myConnection)
{

// Read all the data in the database into a list
// Could replace this with a single read operation instead

// The database is called ‘Table1’
// The field item in the database is located at ‘Col2’
String table = "Table1";
String field = "Col2";
String sql = "SELECT " + field + " FROM " + table + ";";

OdbcCommand com = new OdbcCommand(sql, myConnection);
List<String> list=new List<String>();
OdbcDataReader reader = com.ExecuteReader();

// Get all the data
while (reader.Read())
{

string word = reader.GetString(0);
list.Add(word);

}
if (list.Count > 0)

return list[0];
return "";

}

setCurrentMessage loads the message called ‘testdb’ to the printer. The example includes a path
‘C:\\’ which indicates the current printer server is a PC running FXPro. The path is NULL for the Touch
Controller version.

private int setCurrentMessage(){
// Set current message to ‘testdb’

String name="testdb";
bool ret;
byte ok;

// Load the message to the printer

ret = currentServer.TCP_LoadMessage (name,L"C:\\",out ok);
currentServer.TCP_PrintMessage (name);

return 0;
}

setFieldValue sends the passed string to a field called ‘MyField’. The string needs to padded or
truncated to ensure the length matches the field size otherwise it will be rejected.

int setFieldValue(String value){
// The incoming field data needs to match the size permitted by the field!
// The field being populated is called ‘MyField’
byte ok;

bool ret = currentServer.TCP_SetFieldDataInMessage(‘MyField’, value, out ok);
return 0;

}

Appendix : functions

DLL Configuration Related Functions

Function Name CreateUDPManager

Inputs None

Outputs Handle to a UDP Manager
Notes Called to establish a UDP Manager that begins to search for remote FXPro

 or Touch Controllers. This is done typically at application launch

Function Name DestroyUDPManager

Inputs Handle to UDP Manager

Outputs None
Notes Called to destroy a previously setup manager when tidying up resources prior to

 application shutdown

Function Name UDPRefresh

Inputs Handle to UDP Manager

Outputs None
Notes Called to restart the UDP polling process during initial FXPro or Touch

 Controller searching

Function Name DestroyUDPManager

Inputs Handle to UDP Manager

Outputs None

Notes Called to destroy a previously setup manager

Function Name GetServerListSize

Inputs Handle to UDP Manager

Outputs Number of servers found
Notes This returns the number of PC FXPro or Touch Controllers located over

 Ethernet (or local) that are responding to the DLL

Function Name UDP_GetName

Inputs Handle to UDP Manager, index

Outputs Returns a string with the name of the server being addressed
Notes Each server that has responded to the DLL call is assigned an index. The user

 can cycle through each index and extract the name of the server. This allows

 individual servers to be identified and displayed to the user

Function Name UDP_IsPC

Inputs Handle to UDP Manager, index

Outputs Returns true or false
Notes For a particular index, the server can identify itself as being a FXPro PC

 application (true) or Touch Controller (false). Some DLL commands are specific
 just for the Touch Controller so this function can be used to distinguish between

 the different types

Function Name ConnectToServer

Inputs Handle to UDP Manager, index

Outputs None

Notes Connects the UDP Manager to a specified server (FXPro or Touch
 Controller). This needs to be done before the host system can issue commands

 to the server

Function Name UDP_FoundInitialServers

Inputs Handle to UDP Manager

Outputs Returns true or false
Notes Starts the polling process to search for FXPro or Touch Controller servers.

 The function will return true if any servers are found or false otherwise within a

 time period. The user can subsequently call UDP_Refresh to continue the

 search

Printer Related Functions

A single or group of connected printers to a FXPro PC application or Touch Controller can be
monitored remotely.

Function Name TCP_GetNetworkListPrinterCount

Inputs Handle to UDP Manager
Outputs Number of printers
Notes Returns the number of printers in the network group connected to the currently

 selected server.

Function Name TCP_GetNetworkListPrinterList

Inputs Handle to UDP Manager

Outputs Number of printers
 Structure for each printer index containing:
 comport – the port used to connect the printer to the group.
 errorCode – the current error status of the printer.

 name – the name of the printer as a string.

Notes Returns the number of printers in the network group connected to the currently
 selected server.

Function Name TCP_SwitchToPrinterByname

Inputs Handle to UDP Manager, printer name as a string.

Outputs ok – if switch performed successfully.

Notes A delay of approximately 1 second may be required to allow the server to
 disconnect from one printer and establish connection with the new printer.

Function Name TCP_GetPrinterType

Inputs Handle to UDP Manager

Outputs Name of printer[17 bytes],
 Type of printer 1 byte - 0:FXPRO-S, 1:FXPRO-R, 2:FXPRO-P

 Ok – 0:Printer not found, 1:Printer found

Notes Returns whether there is a printer connected to the server and what type it is

(FXPRO-S, FXPRO-R or FXPRO-P). The name assigned to that printer is also
returned

Function Name TCP_GetPrinterFirmware

Inputs Handle to UDP Manager

Outputs Type of printer 1 byte - 0:FXPRO-S, 1:FXPRO-R, 2:FXPRO-P
 Major firmware version 1 byte

 Minor firmware version 1 byte

Notes

 Returns the type of printer is connected (FXPRO-S, FXPRO-R or FXPRO-P) and also
the firmware version installed in that printer

Function Name TCP_GetPrinterStatus

Inputs Handle to UDP Manager
Outputs Ok – 0:Printer not found, 1:Printer found

 Error code 1 byte - see enumerated list below
 Status code 1 byte – see enumerated list below

 Number of prints 4 bytes – number of prints done by this printer

Notes
Returns the type of printer is connected (FXPRO-S, FXPRO-R or FXPRO-P) and also
the firmware version installed in that printer

Please consult the printer user manual for further information about these codes.

Enumeration Error Code

0 ERROR_NO_ERROR

1 ERROR_LOW_INK

2 ERROR_SHUTTER_FAULT

3 ERROR_NO_FILE_ON_USB_STICK
4 ERROR_TOO_MUCH_DATA_USB_STICK

5 ERROR_DATA_INVALID_CHECKSUM_USB_STICK

6 ERROR_DATA_NO_STX_USB_STICK

7 ERROR_DATA_NO_ETX_USB_STICK

8 ERROR_DATA_SIZE_MISMATCH_USB_STICK

9 ERROR_DATA_INVALID_TYPE_USB_STICK

10 ERROR_TOO_MUCH_DATA_DIRECT_CONNECTION

11 ERROR_DATA_INVALID_CHECKSUM_DIRECT_CONNECTION

12 ERROR_DATA_NO_STX_DIRECT_CONNECTION

13 ERROR_DATA_NO_ETX_DIRECT_CONNECTION

14 ERROR_DATA_SIZE_MISMATCH_DIRECT_CONNECTION

15 ERROR_DATA_INVALID_TYPE_DIRECT_CONNECTION

16 ERROR_DATA_INVALID_ELEMENT_TYPE
17 ERROR_DATA_INVALID_TIME

18 ERROR_DATA_INVALID_DATE

19 ERROR_DATA_INVALID_SHIFT

20 ERROR_DATA_INVALID_COUNTER

21 ERROR_DATA_INVALID_BARCODE

22 ERROR_DATA_INVALID_SPIT
23 ERROR_DATA_INVALID_TICKLE

24 ERROR_DATA_INVALID_SHUTTER_OPEN_CALIBRATION

25 ERROR_DATA_INVALID_SHUTTER_CLOSE_CALIBRATION

26 ERROR_DATA_INVALID_SHUTTER_OPEN_TIME
27 ERROR_DATA_INVALID_PRINT_PARAMETERS

28 ERROR_DATA_INVALID_BACKGROUND

29 ERROR_DATA_TOO_MANY_DYNAMIC_ELEMENTS

30 ERROR_DATA_TOO_MANY_FONT_COMBINATIONS

31 ERROR_DATA_FONT_TABLE

32 ERROR_INVALID_SYMBOL

 33 ERROR_PRINTER_BUSY

 34 ERROR_POWER_FAULT_14V

 35 ERROR_POWER_FAULT_24V

 36 ERROR_POWER_FAULT_36V

 37 ERROR_CORRUPTED_PACKET

 Enumeration Status Code

 0 PRINTER_ERROR

 1 PRINTER_NO_MESSAGE

 2 PRINTER_MESSAGE_PRINT_OFF

 3 PRINTER_MESSAGE_PRINT_ON

 4 PRINTER_PRINTING

 5 PRINTER_CONFIGURATION

Function Name TCP_SetPrinterStatus

Inputs Handle to UDP Manager, Print status

Outputs Ok – 0:Printer not found, 1:Printer found

Notes Turns printing on (1) or off (0)

Function Name TCP_GetPrinterSettings

Inputs Handle to UDP Manager

Outputs Ok – 0:Printer not found, 1:Printer found

 Printer settings structure (see below)

Notes Turns printing on (1) or off (0)

 Property Notes

 Orientation 0: Normal, 1: Upside down printing

 Direction 0: Right to left, 1: Left to right printing

 Ink Type 0: Oil, 1:Solvent

 Shutter Type 0: Not fitted, 1: Manual, 2: Motorised

 Autoprint 0: Single shot, 1: Repeat print

 Encoder 0: Not fitted, 1: Fitted

 Ink Saver 0: Disabled, 1: Enabled

 Spit Time Time in seconds (up to 255) between spits

 Tickle Time Time in seconds (up to 255) between tickles

 Shutter Time Time in seconds (up to 255) before shutter closes

 Shutter Open Calibration Calibration value (0 to 999)

 Shutter Close Calibration Calibration value (0 to 999)

 Printer Name[17 bytes] ASCII printer name

Function Name TCP_SetPrinterSettings

Inputs Handle to UDP Manager
 Orientation
 Direction
 Ink Type
 Shutter Type
 Autoprint

 Encoder
 Ink Saver
 Spit Time
 Tickle Time
 Shutter Time
 Shutter Open Calibration

 Shutter Close Calibration

 Printer Name[17 bytes]

Outputs Ok – 0:Printer not found, 1:Printer found

Notes Writes the printer settings back to the printer. It is the users responsibility to
 make sure the data is valid

FXPro And Touch Controller Settings Related Functions

These functions relate to both the FXPro PC application and Touch Controller.

Function Name TCP_GetLanguage

Inputs Handle to UDP Manager
Outputs Single byte representing language based on winnt.h

 LANG_ENGLISH 0x09
 LANG_ARABIC 0x01
 LANG_CHINESE 0x04
 LANG_FARSI 0x29
 LANG_GERMAN 0x07

 LANG_GREEK 0x08

 LANG_SPANISH 0x0a

 LANG_FRENCH 0x0c
 LANG_HEBREW 0x0d
 LANG_ITALIAN 0x10
 LANG_JAPANESE 0x11
 LANG_KOREAN 0x12
 LANG_DUTCH 0x13
 LANG_PORTUGUESE 0x16
 LANG_POLISH 0x15

 LANG_RUSSIAN 0x19

 LANG_TURKISH 0x1f

Notes Returns the current language setting in the server

Function Name TCP_SetLanguage

Inputs Handle to UDP Manager, language (based on winnt.h)
Outputs Ok- 0: Error, 1: No Error

Notes Returns the current language setting in the server

Function Name TCP_GetShiftSettings

Inputs Handle to UDP Manager

Outputs The shift structure below is populated

Notes Fills in the shift structure from the server

ShiftSettings

ShiftDay[0]
ShiftDay[1]
ShiftDay[2]
ShiftDay[3]
ShiftDay[4]
ShiftDay[5]
ShiftDay[6]
Start Of Day - Hour
Start Of Day - Minute

Each shift day is defined as;

Start Hour[0] Start Minute[0] Shift Code[0]

Start Hour[1] Start Minute[1] Shift Code[1]

Start Hour[2] Start Minute[2] Shift Code[2]

Start Hour[3] Start Minute[3] Shift Code[3]

Function Name TCP_SetShiftSettings
Inputs Handle to UDP Manager,

 Shift hours [28] bytes – 4 shifts per day, 7 days per week starting Monday
 Shift minutes [28] bytes – 4 shifts per day, 7 days per week starting Monday
 Shift codes [28] ASCII bytes – 4 shifts per day, 7 days per week starting Monday
 Start of day hours – 1 byte

 Start of day minutes – 1 byte

Outputs Ok- 0: Error, 1: No Error
Notes The shift pattern is sent as a group of three arrays consisting of all the hours,

 minutes and ASCII codes that define each of the 4 shifts that can be used for a 7

 day week. It is the responsibility of the user to ensure the data is valid

Function Name TCP_GetCalendarType

Inputs Handle to UDP Manager
Outputs Single byte representing calendar type;

 0: Gregorian

 1: Jalali

Notes The calendar type is used for date forwarding calculations. The default setting is
 Gregorian

Function Name TCP_SetCalendarType
Inputs Handle to UDP Manager, calendar type (0: Gregorian, 1: Jalali)

Outputs Ok- 0: Error, 1: No Error

Notes Returns the current language setting in the server

Function Name TCP_GetCartridgeCost

Inputs Handle to UDP Manager
Outputs Major value (4 bytes)

 Minor value (4 bytes)

Notes Returns the decimal (major.minor) value that indicates the cost of the cartridge
 in relevant currency. There is no need to specify the currency as this value is

 used to scale the volume of ink used per print

Function Name TCP_SetCartridgeCost

Inputs Handle to UDP Manager
 Major value (4 bytes)

 Minor value (4 bytes)

Outputs Ok- 0: Error, 1: No Error
Notes It is the users responsibility to convert the xxx.yyy value into appropriate major

 and minor parts

Function Name TCP_GetTime

Inputs Handle to UDP Manager

Outputs Structure with;
 Hours (1 byte)

 Minutes (1 byte)

Notes Returns the current time in the server

Function Name TCP_SetTime

Inputs Handle to UDP Manager
 Hours (1 byte)

 Minutes (1 byte)

Outputs Ok- 0: Error, 1: No Error

Notes It is the users responsibility to confirm the hours and minutes are within the
 correct range

Function Name TCP_GetDate

Inputs Handle to UDP Manager
Outputs Structure with;

 Day (1 byte)
 Month (1 byte)

 Year (1 byte)

Notes Returns the current date in the server. The returned year starts from 2000

Function Name TCP_SetDate

Inputs Handle to UDP Manager
 Day (1 byte)
 Month (1 byte)

 Year (1 byte)

Outputs Ok- 0: Error, 1: No Error
Notes It is the users responsibility to confirm the days, months and years are within

 the correct range (year starts from 2000)

Function Name TCP_GetCOMPortSetting

Inputs Handle to UDP Manager
Outputs Structure containing COM settings:

 Baudrate (4 bytes)
 Databits – 7 or 8 (1 byte)
 Stopbits – 1 or 2 (1 byte)

 Parity – 0: None, 1: Odd, 2: Even (1 byte)

Notes Returns the COM port setting for the server

Function Name TCP_SetCOMPortSetting

Inputs Handle to UDP Manager
 Baudrate (4 bytes)

 Databits – 7 or 8 (1 byte)
 Stopbits – 1 or 2 (1 byte)

 Parity – 0: None, 1: Odd, 2: Even (1 byte)

Outputs Ok- 0: Error, 1: No Error
Notes It is the responsibility of the user to ensure the COM settings are valid for that

 port type e.g. baudrate is achievable and the additional parameters are within

 range

Touch Controller Settings Related Functions

These functions relate to a Touch Controller only.

Function Name TCP_GetControllerFirmware

Inputs Handle to UDP Manager
Outputs Major firmware version 1 byte

 Minor firmware version 1 byte

Notes Returns firmware version installed in that controller

Function Name TCP_GetScreenBrightness

Inputs Handle to UDP Manager

Outputs Brightness (0 to 99) 1 byte

Notes Returns the brightness value set for the screen backlight

Function Name TCP_SetScreenBrightness

Inputs Handle to UDP Manager, brightness (0 to 99)

Outputs Ok- 0: Error, 1: No Error

Notes Sets the brightness value for the screen backlight

Function Name TCP_GetBeeper

Inputs Handle to UDP Manager

Outputs Beeper state 0: Off, 1: On

Notes Returns the beeper state for the controller

Function Name TCP_SetBeeper

Inputs Handle to UDP Manager, beeper state 0: Off, 1: On

Outputs Ok- 0: Error, 1: No Error

Notes Sets the beeper state for the controller

Function Name TCP_GetIPAddress

Inputs Handle to UDP Manager
Outputs Little endian IP address in hex

Notes Returns the IP Address of the controller

Function Name TCP_SetIPAddress

Inputs Handle to UDP Manager
 Little endian IP address in hex

Outputs Ok- 0: Error, 1: No Error
Notes Sets the IP Address of the controller. Note it may be necessary to rebind the

 interface to use any settings changes

Function Name TCP_GetSubnetMask

Inputs Handle to UDP Manager
Outputs Little endian subnet mask in hex

Notes Returns the Subnet mask of the controller

Function Name TCP_SetSubnetMask

Inputs Handle to UDP Manager
 Little endian subnet mask in hex

Outputs Ok- 0: Error, 1: No Error
Notes Sets the subnet mask of the controller. Note it may be necessary to rebind the

 interface to use any settings changes

Function Name TCP_GetDHCPState

Inputs Handle to UDP Manager

Outputs DHCP in use? - 0: Disabled, 1: Enabled

Notes Returns the DHCP status of the controller

Function Name TCP_SetDHCPState

Inputs Handle to UDP Manager
 DHCP usage - 0: Disabled, 1: Enabled

Outputs Ok- 0: Error, 1: No Error

Notes Sets the use of DHCP in the controller

Function Name TCP_RebindInterface

Inputs Handle to UDP Manager
 Interface (1 byte) – default 0

Outputs IP Address

Notes Forces the controller to rebind the Ethernet interface to use any settings
 changes e.g. IP Address, Subnet mask and DHCP usage. The function returns the

 IP Address

Function Name TCP_GetInstalledFontList

Inputs Handle to UDP Manager

Outputs A string of font names
Notes A single list of installed fonts in the controller. This list can then be used to

 reference a font for deletion or confirm that a particular font is installed

Function Name TCP_AddFont

Inputs Handle to UDP Manager
 Font name

 Path on host PC where font is stored

Outputs Ok- 0: Error, 1: No Error
Notes The name of the font includes the extension ‘ttf’. The path can reference any

 drive that is available within Windows Explorer. If coding in C (or similar) it may
 be necessary to include ‘\\’ within the path string as a single ‘\’ will be

 interpreted as a formatting character

Function Name TCP_DeleteFont

Inputs Handle to UDP Manager
 Font name

Outputs Ok- 0: Error, 1: No Error
Notes The name of the font includes the extension ‘ttf’. Any message that uses this

 deleted font will need to have a new font chosen

Function Name TCP_GetInstalledLogoList

Inputs Handle to UDP Manager

Outputs A string of logo names

Notes A single list of installed logos in the controller. This list can then be used to
 reference a logo for deletion or confirm that a particular logo is installed

Function Name TCP_AddLogo

Inputs Handle to UDP Manager
 Logo name

 Path on host PC where logo is stored

Outputs Ok- 0: Error, 1: No Error
Notes The name of the logo includes the extension e.g. ‘png’. The path can reference

 any drive that is available within Windows Explorer. If coding in C (or similar) it
 may be necessary to include ‘\\’ within the path string as a single ‘\’ will be

 interpreted as a formatting character

Function Name TCP_DeleteLogo

Inputs Handle to UDP Manager
 Logo name

Outputs Ok- 0: Error, 1: No Error
Notes The name of the logo includes the extension e.g. ‘png’. Any message that uses

 this deleted logo will need to have a new font chosen

Message Transfer And Management Related Functions

Function Name TCP_GetNumberOfInstalledMessages

Inputs Handle to UDP Manager
 Optional path

Outputs The number of messages available
Notes This function returns the number of messages available from the server. A PC

 FXPro can specify an optional folder path to search within. The Touch

 Controller has a fixed location so is NULL

Function Name TCP_GetInstalledMessageList

Inputs Handle to UDP Manager
 Optional path

Outputs A string of message names
Notes This function returns a string containing the names of all the messages available

 on the server. A PC FXPro can specify an optional folder path to search

 within. The Touch Controller has a fixed location so is NULL

Function Name TCP_AddMessage

Inputs Handle to UDP Manager
 Message name

 Path on host PC where message is stored

Outputs Ok- 0: Error, 1: No Error
Notes The name of the message doesn’t need to have the extension SVN. The path

 can reference any drive that is available within Windows Explorer. If coding in C

 (or similar) it may be necessary to include ‘\\’ within the path string as a single

 ‘\’ will be interpreted as a formatting character

Function Name TCP_DeleteMessage

Inputs Handle to UDP Manager
 Message name

 Optional path

Outputs Ok- 0: Error, 1: No Error
Notes The name of the message doesn’t need to have the extension SVN. There is no

 undo. A PC FXPro can specify an optional folder path to search within. The

 Touch Controller has a fixed location so is NULL

Function Name TCP_RenameMessage

Inputs Handle to UDP Manager
 Original message name

 New message name

 Optional path

Outputs Ok- 0: Error, 1: No Error
Notes The name of the message doesn’t need to have the extension SVN. There is no

 undo. A PC FXPro can specify an optional folder path to search within. The

 Touch Controller has a fixed location so is NULL

Function Name TCP_GetUSBStickConnectedState

Inputs Handle to UDP Manager

Outputs Ok- 0: Not connected, 1: Connected

Notes This is the state of the USB stick connected to the controller or PC not the
 printer

Function Name TCP_GetCurrentMessageName

Inputs Handle to UDP Manager

Outputs Message name string (17 bytes)

Notes This function returns the name of the current message name set to print

Function Name TCP_GetAnyFieldDataInCurrentMessage

Inputs Handle to UDP Manager

Outputs Ok- 0: No fields, 1: Fields
Notes This returns whether there are any fields within the message that can be

 updated

Function Name TCP_GetFieldNamesInCurrentMessage

Inputs Handle to UDP Manager

Outputs A string containing all the field labels

Notes This function is called if TCP_GetAnyFieldDataInCurrentMessage indicates there
 is at least one field in the current message

Function Name TCP_GetFieldDataInCurrentMessage

Inputs Handle to UDP Manager
 Field name

Outputs A structure containing;
 The field data (50 bytes) – ASCII string
 Match (1 byte) – 0: No matching field found, 1: Match found
 Length (1 byte) – the number of characters needed in the field

 Type (1 byte) - 0: numbers, 1:letters

Notes This function is called if TCP_GetAnyFieldDataInCurrentMessage indicates there
 is at least one field in the current message. The field structure is populated with
 the current field information. This allows the user to extract the current data

 and replace with new

Function Name TCP_SetFieldDataInCurrentMessage

Inputs Handle to UDP Manager
 Field name

 Field data

Outputs Ok- 0: Error, 1: No Error

Notes This function writes the ‘Field data’ string to the field called ‘Field name’

Function Name TCP_GetCounterListInMessage

Inputs Handle to UDP Manager
Outputs Ok- 0: No counters, 1: Counters present

 Len (2 bytes) – the length of the counter list string

 Array of indices (2 bytes) – used to reference the counter

Notes This returns a list of counters in the current message

Function Name GetCounterValueInMessage

Inputs Handle to UDP Manager
 Index into counter

Outputs Value (4 bytes) – current value of counter
 Batch (4 bytes) – current value within a batch (batch counter)
 Range (4 bytes) – number of digits for counter
 Rollover (4 bytes) – the number at which the counter rolls over to the start
 Type(1 byte) – 0: count up, 1: count down
 Batch Size (4 bytes) – The number of products per batch
 Suppress Zeroes (1 byte) – 0: No, 1: Yes
 Edit Out Of Message (1 byte) – 0: No, 1: Yes

 Ok- 0: Index invalid, 1: Index valid

Notes This returns a structure which has all the information needed to determine for
 the specified index, the current counter value for display purposes.

Function Name TCP_SetCounterValueInMessage

Inputs Handle to UDP Manager
 Index

 New counter value

 New batch value (1 if not using a batch)

Outputs Ok- 0: Error, 1: No Error

Notes This function writes the ‘Field data’ string to the field called ‘Field name’

Function Name TCP_LoadMessage

Inputs Handle to UDP Manager
 Message name

 Optional path

Outputs Ok- 0: Error, 1: No Error
Notes This function loads the specified message name to the server. At this stage, the

 message is not in the printer. The user can then interrogate the message for any

 dyanamic data and update the message prior to it being sent to the printer. The
 name of the message doesn’t need to have the extension SVN. A PC FXPro
 can specify an optional folder path to search within. The Touch Controller has a

 fixed location so is NULL

Function Name TCP_PrintMessage

Inputs Handle to UDP Manager
Outputs Ok- 0: Error, 1: No Error

Notes This function transmits the currently loaded message name to the server. Any
 dynamic content is rolled up prior to despatch.

